LOGO maxwissen

Wenn es um Maßnahmen gegen den Klimawandel geht, stehen häufig technische Lösungen im Vordergrund: Maschinen, die CO₂ aus der Luft filtern, spezielle Baustoffe oder Speicheranlagen. Dabei gerät leicht aus dem Blick, dass die Natur selbst eine starke Verbündete im Kampf gegen den Klimawandel sein kann. Wälder, Moore und Ozeane nehmen seit Millionen von Jahren Kohlenstoffdioxid auf – und könnten auch jetzt eine zentrale Rolle im Kampf gegen die Erderwärmung spielen. Sönke Zaehle vom Max-Planck-Institut für Biogeochemie spricht mit Wissenschaftsjournalistin Alice Lanzke darüber, warum diese Senken so wichtig sind, wie sie sich verändern und was für ihren Schutz nötig ist.

Audiodatei | 20 min, Juni 2025

© MPG / CC BY-NC-ND 4.0

Inhalt: Forschende sind auf der Suche nach individuellen Therapien und neuen Medikamenten bei Depressionen.

Einem Forschungsteam am Max-Planck-Institut für Multidisziplinäre Naturwissenschaften ist es erstmals gelungen, den gesamten Prozess des Eisprungs in Follikeln einer Maus zu filmen. Was bedeutet das für die Fruchtbarkeitsforschung?

Themen im Podcast
Grundlagen Menstruationszyklus (min 0:56)
Was passiert beim Eisprung? (min 2:28)
Wie entstand der Film zum Eisprung in Folliken der Maus? (min 2:58)
Neue Erkenntnisse zum Eisprung (min 6:37)
Übertragung auf den Menschen (min 8:37)
Bedeutung der Erkenntnisse, weiterführende Forschungsfragen (min 10:00)

Zum Podcast (13 min) vom 8. Mai 2025 © detektor.fm / Max-Planck-Gesellschaft

Hintergrundinfos und Video (Eisprung)


Foto: © Christopher Thomas, Tabea Lilian Marx et al./ MPI für Multidisziplinäre Naturwissenschaften

Illustration: Jugendlicher, der den Kopf in eine Hand stützt und in ein Heft schreibt. Auf dem Tisch liegen zerknüllte Seiten.

„Ich bin total im Stress!“ – wer hat das nicht schon oft gehört. Ob in Schule, Studium oder Beruf: Lernstress vor Prüfungen, Termindruck im Job und manchmal sogar Freizeitstress, wenn man sich unter der Woche zu viel vorgenommen hat. Stress hat in unserer Gesellschaft ein ausgesprochen schlechtes Image. Zu Recht? „Ohne Stress wäre unser Leben ziemlich langweilig“, sagt der Biologe Mathias V. Schmidt vom Max-Planck-Institut für Psychiatrie in München. „Wir könnten unseren Alltag gar nicht bewältigen, wenn es keinen Stress gäbe und wir kein funktionierendes Stresssystem hätten.“

Stress ist also per se nichts Negatives. Das Stresshormon Cortisol etwa hilft uns dabei, morgens überhaupt aufstehen zu können – zu diesem Zeitpunkt ist die Cortisol-Konzentration im Blut erhöht. Sie sorgt dafür, dass wir mit Energie in den Tag starten. Abends sinkt sie wieder, damit wir zur Ruhe kommen. „Im Grunde helfen uns Stressreaktionen dabei, die ganz normalen Herausforderungen des Alltags zu bewältigen. Stress gehört zum Leben dazu“, sagt Mathias V. Schmidt. Problematisch wird es, wenn wir zu viel Stress haben – und zwar in Bezug auf Intensität und Dauer (Abb. A). Hält Stress zu lange an, kann unser Stoffwechsel nicht mehr in den Normalzustand  zurückkehren. Ein solcher Dauerstress kann krank machen und  psychische Erkrankungen wie zum Beispiel Depressionen auslösen. Auch besonders intensiver Stress, etwa durch traumatische Erlebnisse, kann zu solchen Erkrankungen führen. Mathias V. Schmidt untersucht unter anderem an Mäusen, wie verschiedene Arten von Stress auf Säugetiere wirken. Mäuse sind dafür gut geeignet, weil ihr Stresshormon-System und die Rezeptoren – die Andockstellen für Stresshormone in ihrem Gehirn – denen des Menschen sehr ähnlich sind. In seiner Forschung hat der Biologe unter anderem herausgefunden, dass sozialer Stress bei Mäusen einer der stärksten Stressoren überhaupt ist.

Das Balkendiagramm stellt Nennungen von Stressursachen in Prozent dar (Unterteilung: Männer, Frauen, gesamt). Häufig wurden das Pensum an Anforderungen von Schule, Studium und Beruf sowie hohe Ansprüche an sich selbst genannt.

Abb. A: Ursachen von Stress. Auszug einer Befragung von volljährigen Personen in Deutschland im Frühjahr 2021: Große Stressfaktoren sind – wie schon vor der Corona-Pandemie – das Pensum an Anforderungen von Schule, Studium und Beruf sowie hohe Ansprüche an sich selbst. Stark an Bedeutung gewonnen hat durch die Pandemie die Sorge um erkrankte Nahestehende. Weitere Ursachen siehe Quelle.
© Quelle Zahlen: Techniker Krankenkasse (TK-Stressstudie, 2021); Grafik: HNBM

Stress außer Kontrolle

Sozialer Stress macht Mäuse vor allem dann krank, wenn er sich nicht kontrollieren lässt und unerwartet auftritt. Experimente lassen sich zum Beispiel so konstruieren, dass eine Maus bei Auseinandersetzungen immer verliert. Experten sprechen von „social defeat“ – „sozialer Niederlage“. Eine solche Maus entwickelt zwar keine Depression, zeigt aber krankhafte Veränderungen. So kann sie zum Beispiel apathisch oder fettleibig werden. Diese Ergebnisse seien auf den Menschen übertragbar, betont Schmidt: „Auch beim Menschen wirkt vor allem jener Stress besonders stark, der unkontrollierbar und unberechenbar ist, zum Beispiel bei Mobbing, das Menschen auf Dauer krank machen kann.“ Ein anderes Beispiel sei die Corona-Pandemie gewesen. Zu Beginn der Pandemie im Frühjahr 2020 war noch unklar, wie gefährlich der Erreger ist und wie man sich wirkungsvoll dagegen schützen kann. Die Menschen fühlten sich ständig einer unberechenbaren Gefahr ausgesetzt. „Durch diesen chronischen Stress hat die Zahl depressiver Symptome damals messbar zugenommen“, erklärt der Max-Planck-Forscher (Abb. B). Als dann die ersten Impfstoffe auf den Markt kamen und klar wurde, wie man sich schützen kann, nahm der Stress wieder ab. „Kontrollierbaren Stress können wir Menschen deutlich besser bewältigen.“ Prüfungsstress kann man beispielsweise minimieren, indem man frühzeitig beginnt, den Lernstoff in kleine Einheiten aufteilt und einen Zeitplan erstellt. Durch Simulieren der Prüfungssituation gewinnt man an Sicherheit. Zu bedenken ist aber auch, dass jeder Mensch anders auf Stressoren reagiert“, so der Wissenschaftler.

Zwei Grafiken, die zeigen, dass die globale Prävalenz von schweren depressiven Störungen bei Männern und Frauen während der Covid-19-Pandemie zugenommen hat.

Abb. B: Mögliche Folgen von unkontrollierbarem Stress. Globale Prävalenz von schweren depressiven Störungen vor und während der COVID-19-Pandemie nach Alter und Geschlecht.
© Quelle: Lancet 2021; 398: 1700–12, Fig. 1 (Auszug); https://doi.org/ 10.1016/S0140-6736(21)02143-7 / CC BY 4.0

Anhaltender, unkontrollierbarer Stress und traumatische „Stresserlebnisse“ können also zu einer Depression führen. Welche  Mechanismen dahinterstecken und welche Veränderungen im Stoffwechsel Depressionen auslösen, hat man bisher aber nur zum Teil verstanden. Vor 50 Jahren gingen Fachleute noch davon aus, dass Depressionen einzelne, klare Auslöser hätten. Gemäß dieser Vorstellung habe die Erkrankung ihre Ursache in veränderten biochemischen „Pfaden“ (engl. pathways), also einzelnen, klar umrissenen Stoffwechselwegen. Inzwischen ist die Forschung deutlich weiter: Tatsächlich können Depressionen viele verschiedene biologische Auslöser haben. Etwa ein Drittel des Risikos, an einer Depression zu erkranken, ist auch genetisch bedingt – Genomanalysen von Menschen mit Depressionen haben gezeigt, dass viele Gene an der Entstehung einer Depression beteiligt sind. Dieses genetische Risiko spielt mit den Risiken durch Stress zusammen, und könnte zum Teil erklären, warum Menschen resilient oder weniger resilient gegenüber Stresserfahrungen sind.

Alles eine Frage der Gene?

Ein Forschungsteam am Max-Planck-Institut für Psychiatrie ist genau dieser Frage nachgegangen, welche genetischen Varianten an der Reaktion auf Stress und dem Risiko, eine psychiatrische Störung zu entwickeln, beteiligt sein könnten. Dazu nutzten sie eine Substanz namens Dexamethason, die ähnlich wirkt wie das Stresshormon Cortisol und ebenso wie dieses eine molekulare und zelluläre Antwort, beginnend auf der Ebene der DNA, auslöst. Das Team untersuchte Zellen, die besonders empfindlich auf Stress reagieren. Dabei fanden sie über 500 Stellen im Erbgut (sog. Loci), die Reaktionen auf Stress zeigten, sowie 79 genetische Varianten, die die Expression von Genen und somit die molekulare Antwort auf Stress nur bei Behandlung mit Dexamethason beeinflussten. Diese Varianten stehen, wie große internationale Studien gezeigt haben, auch im Zusammenhang mit dem Risiko, eine psychiatrische Störung zu entwickeln.

Um herauszufinden, wie die Kombination der Varianten dieses Risiko beeinflusst, unterzog das Forschungsteam die Teilnehmenden der Studie einer Stressaufgabe. Dabei zeigte sich, dass eine höhere Anzahl dieser „stressreaktiven“ Genvarianten mit einem Anstieg des Cortisolspiegels bei den entsprechenden Probanden verbunden war. Dieser Unterschied wurde vor der Stressaufgabe nicht beobachtet, was heißt, dass diese Varianten nur in Stresssituationen von Bedeutung waren. Personen mit vielen dieser Genvarianten konnten ihr Stresshormon-System nach der Aufgabe nicht wieder schnell normalisieren und waren dadurch „unnötig“ lange gestresst. So zeigte ein weiterer Test, dass Personen mit mehr Risikovarianten bei Erschrecken intensiver reagierten und sich die Stärke der Schreckreaktion auch nach Wiederholen des Schreckreizes noch erhöhte. „Dabei hätte man eigentlich ein verringerte Reaktionen durch Gewöhnung erwartet“, erklärt Elisabeth Binder, Direktorin am Max-Planck-Institut für Psychiatrie.

„Die Genetik hat also einen Einfluss auf die Empfindlichkeit unserer Reaktion auf Stress. Der molekulare Mechanismus könnte erklären, warum belastende Lebensereignisse mal mehr oder weniger mit psychiatrischen Störungen korrelieren“, fasst Binder die Ergebnisse zusammen. Diese Erkenntnisse seien wichtig für die Vorhersage, welche Menschen ein höheres Risiko haben, als Reaktion auf Stress psychiatrische Störungen zu entwickeln, so die Forscherin weiter. Das könnte helfen, frühzeitig Hilfen anzubieten, um die Entwicklung von psychiatrischen Störungen zu vermeiden.

Stress lass nach

In zahlreichen Forschungsprojekten wird nach neuen Therapieansätzen für psychiatrische Störungen gesucht. Im Fokus der Untersuchungen steht dabei jenes Stresshormon-System, das unsere Anpassung an Stresssituationen koordiniert, die sogenannte Hypothalamus-Hypophysen-Nebennieren-Achse (HPA-Achse). Eine wichtige Schaltstelle in diesem System ist der Glukokortikoid- Rezeptor. Er kommt in nahezu allen Zellen vor und reguliert dort die Genexpression. Aber erst wenn das Stresshormon Cortisol an den Rezeptor bindet, kann dieser an die entsprechenden Kontrollstellen auf der DNA binden (Abb. C) und so die Transkription und damit die Biosynthese vieler verschiedener Proteine anstoßen, die für die Stressreaktion wichtig sind.

Grafik: Darstellung der DNA und des Glucocorticoid-Rezeptors

Abb. C: Schaltstelle für Stress. Glucocorticoid-Rezeptor (DNA-Bindungsdomäne), gebunden an einen DNA-Doppelstrang.
© molekuul.be / Adobe Stock

Die Empfindlichkeit des Glukokortikoid-Rezeptors gegenüber Cortisol wird durch eine Reihe von Molekülen, sogenannte Chaperone und Co-Chaperone moduliert. Chaperone beeinflussen die Aktivität anderer Proteine, indem sie diese bei der Faltung in ihre dreidimensionale Struktur unterstützen. Sie sind in verschiedenen Zelltypen und bei verschiedenen Proteinen aktiv. Das Chaperon mit dem Kürzel FKBP51 ist von besonderem Interesse, denn es setzt die Cortisol-Bindefähigkeit des Glukokortikoid-Rezeptors herab. Auf diese Weise sorgt es dafür, dass die Stressreaktion des Körpers wieder heruntergefahren wird, wenn der äußere Stress nachlässt, eine bedrohliche Situation beispielsweise vorüber ist. Das ist ein ganz natürlicher und wichtiger Mechanismus. Genomanalysen bei Menschen mit Stress-bedingten psychiatrischen Erkrankungen, wie der posttraumatischen Belastungsstörung (PTBS) und Depressionen, haben gezeigt, dass bei manchen von ihnen Veränderungen an genau jenem Gen vorliegen, das für das Chaperon FKBP51 kodiert. Möglicherweise wird FKBP51 deshalb vermehrt synthetisiert und dämpft den Glukokortikoid-Rezeptor dauerhaft. Das könnte, so die Annahme, bei depressiven Menschen zu Antriebslosigkeit und Niedergeschlagenheit führen. Auch Veränderungen der Interaktionen des Chaperons mit anderen für Nervenzellen wichtigen Proteinen könnten eine Erklärung dafür sein, warum manche Menschen mehr oder weniger stressresistent sind.

Chaperone sind ein hochinteressanter, potenzieller Angriffspunkt (engl. target) für neue Medikamente und damit verbunden die Therapie depressiver Menschen. Derzeit werden erste Chaperon-Antagonisten entwickelt, die die Aktivität der Chaperone oder deren Biosynthese hemmen. Die Herausforderung dabei: Es gibt viele  verschiedene Chaperone, die in ganz verschiedenen Zellen und  Geweben aktiv sind und die ganz unterschiedliche Stoffwechselreaktionen steuern. Das bedeutet, dass Chaperon-Antagonisten im  Körper sehr gezielt in die für die Stressreaktion zuständigen Zellen  eingeschleust werden müssten. Wie sich eine solche gezielte Form des „drug delivery“ technisch umsetzen ließe, ist noch Gegenstand der Forschung.

Kann Stressresistenz erlernt werden?

Aber es sind nicht immer die Gene, die dazu führen, dass manche Menschen nach einem traumatischen Erlebnis eine Depression entwickeln, während andere Menschen mit gleicher Erfahrung nicht erkranken. Tatsächlich spielen auch epigenetische Prozesse eine zentrale Rolle: Sie verändern beispielsweise das Muster der  Methylgruppen an der DNA und damit die Aktivierbarkeit bestimmter Gene in bestimmten Zellen oder Organen (s. Biomax 23). So prägt die  Epigenetik auch unser Stresssystem. Frühkindlicher Stress beispielsweise kann sich langfristig auf die psychische Gesundheit auswirken und das Risiko für die Entwicklung von Angststörungen und einer posttraumatischen Belastungsstörung erhöhen.

„Stress und Trauma in der Kindheit sind ein maßgeblicher Risikofaktor“, betont Elisabeth Binder. So gehen belastende Kindheitserfahrungen mit einem doppelt so hohen Risiko für depressive Störungen und einem 2,7-fach erhöhten Risiko für Angststörungen im Erwachsenenalter einher. Aber: „Ganz ohne Stress kann auch keine Resistenz aufgebaut werden“, betont die Medizinerin. Tatsächlich legt die Stressforschung der vergangenen Jahre nahe, dass Stressresistenz in der frühkindlichen Entwicklung erlernt wird. Durch seine Experimente an Mäusen hat Mathias V. Schmidt herausgefunden, dass es offenbar wichtig ist, in der Kindheit moderaten Stress zu erfahren. „Stresserfahrung ist essenziell, damit die Mäuse „lernen“, mit Stress umzugehen“, sagt Schmidt. Das sei höchstwahrscheinlich auch beim Menschen so. „Wer zum Beispiel überbehütet aufwächst, kann später den Stress, den Konflikte zwangsläufig mit sich bringen, schlechter bewältigen“, so der Forscher.

Dieses „Stress-Lernen“ findet sehr wahrscheinlich ebenfalls zu einem Teil auf der epigenetischen Ebene statt. „Wir gehen heute davon aus, dass das Erlernen von Stress in der frühkindlichen Entwicklung durch die Methylierung gesteuert wird“, sagt der Max-Planck-Forscher.  Epigenetische Veränderungen fänden auch an den Histonen statt,  jenen Proteinen, um die der DNA-Strang im Zellkern gewickelt ist.  Durch Acetylierung der Histone kann die Wicklung verfestigt oder gelockert werden. Auch das beeinflusst, ob bestimmte Gene aktiviert oder unterdrückt werden. Mittlerweile gibt es konkrete Hinweise darauf, dass zahlreiche epigenetische Veränderungen einen Einfluss darauf haben, wie verschiedene Menschen auf Stress reagieren.

Um die Entwicklung psychiatrischer Erkrankungen zu verstehen, müssen somit neben den genetischen Analysen auch die epigenetischen Kodierungen identifiziert werden. Damit tun sich viele neue Wege für Therapien auf. Stress und Depressionen mögen ein komplexes Phänomen sein, doch die jüngsten Erkenntnisse liefern auch viele Ansatzpunkte für neue Medikamente. Schmidt: „Diese Entwicklungen stimmen mich zuversichtlich, dass wir in den nächsten Jahren große Fortschritte beim Verständnis des Stresses und bei der Entwicklung neuer Wirkstoffe gegen Depressionen und andere psychische Erkrankungen machen werden.“

Schau mir in die Augen – Pupillometrie als Diagnoseergänzung

Computerbildschirm mit Programmoberfläche zur Pupillometrie.

© MPI für Psychiatrie

Antriebslosigkeit ist eines der meist beobachteten Symptome der Depression. Ein Forscherteam des Max-Planck-Instituts für Psychiatrie hat herausgefunden, dass die geringere Pupillenreaktion bei Patienten und Patientinnen einen entsprechenden Hinweis darauf liefert. Bei gesunden Menschen erweitern sich die Pupillen bei der Erwartung auf eine Belohnung, wohingegen diese Reaktion bei Personen mit Depressionen weniger aus geprägt ist. Die Pupillenreaktion ist unter anderem ein Marker für die Aktivität im Locus Coeruleus, einer Gehirnstruktur mit der größten Ansammlung noradrenerger Neuronen im zentralen Nervensystem. Sie könnte als ergänzende Methode zur Diagnosestellung eingesetzt werden. Wenn beispielsweise ein Patient starke Beeinträchtigungen in der Pupillenreaktion zeigt, könnten Antidepressiva, die auf das noradrenerge System wirken, effektiver als andere Medikamente sein.

Abbildungshinweise:
Titelbild: © HNBM
Abb. A: © Quelle Zahlen: Techniker Krankenkasse (TK-Stressstudie, 2021); Grafik: HNBM
Abb. B: © Quelle: Lancet 2021; 398: 1700–12, Fig. 1 (Auszug); https://doi.org/ 10.1016/S0140-6736(21)02143-7 / CC BY 4.0
Abb. C: © molekuul.be / Adobe Stock
Abb. im Kasten: © MPI für Psychiatrie

Der Text wird unter CC BY-NC-SA 4.0 veröffentlicht.

BIOMAX Ausgabe 40, April 2025; Text: Christina Beck, Tim Schröder; Redaktion: Tanja Fendt

Die Sammlung enthält Aufgaben zu folgenden Themen:

Keeling-Kurve / Das weltweite CO2-Budget / Umwandlung von Kohlenstoffsenken in -quellen / Einfluss von El Niño / Schutz von Kohlenstoffsenken

Unterrichtsmaterial zum Geomax 30

linker Button: Aufgabensammlung; rechter Button: Anlage (Arbeitsblatt zur Aufgabe 4)

Eine Schwächung der Nordatlantischen Umwälzzirkulation könnte bis zum Jahr 2100 Folgekosten von mehreren Billionen Euro verursachen, da weniger Kohlenstoffdioxid vom Ozean aufgenommen wird und sich das Klima weiter erhitzt. Die Forschung zeigt, dass frühere Studien die Folgen der Abschwächung der nordatlantischen Umwälzströmung wahrscheinlich unterschätzt haben. Denn die geringere CO2-Aufnahme durch die Ozeane könnte zu häufigeren und extremen Wetterereignissen führen.

[Dauer des Videos: 3 min]

YouTube-Link: https://youtu.be/BoNA-C7fFoI

Hintergrundinfos zur Studie

 

 

Die gestrichelte rote Linie zeigt den zeitlichen Verlauf der CO2-Aufnahme bzw. -Abgabe des Amazonasgebiets für das Jahr 2023. Der schattierte Bereich gibt die normalen Werte der letzten zwei Jahrzehnte (2003-2023) an. Die gestrichelte schwarze  Linie ist die Netto-Null-Linie, d.h. CO2-Aufnahme und -Abgabe sind ausgeglichen. Von Januar bis April 2023 war die Kohlenstoffaufnahme höher als üblich. Das änderte sich im Mai, als der Regenwald begann, mehr CO2 freizusetzen, wobei die höchsten Werte im Oktober gemessen wurden. Da die CO2-Emissionen durch Brände innerhalb der normalen Werte der letzten zwei Jahrzehnte lagen, führen die Forschenden die Anomalie auf eine verringerte CO2-Aufnahme durch den Regenwald zurück.

© S. Botía, MPI für Biogeochemie / CC BY 4.0

Die Drohnenaufnahme zeigt von oben den Amazonas-Regenwald und wie der ATTO-Forschungsturm über die Bäume in die Höhe ragt.

© P. Papastefanou / MPI-BGC

Im Jahr 1958 installierte der amerikanische Chemiker Charles D. Keeling ein Messgerät für Kohlenstoffdioxid (CO2) auf dem Vulkan Mauna Loa auf der Insel Hawaii. Das Gerät stand in rund 3.400 Metern Höhe, weit weg von störenden CO2-Quellen wie Industriegebieten. Keeling wollte den CO2-Gehalt der Atmosphäre bestimmen. Bis dahin gab es dazu nur ungenaue und widersprüchliche Daten. Daher war unklar, ob sich das Treibhausgas durch das Verbrennen von Öl, Gas und Kohle in der Atmosphäre anreichert. Viele Forschende vermuteten, das dabei freigesetzte CO2 würde vom Ozean geschluckt. Die vom Menschen verursachte Erderwärmung war damals bloß eine Theorie.

Keeling machte zwei Entdeckungen: Zum einen stellte er fest, dass die CO2-Konzentration innerhalb eines Jahres schwankt und dem Vegetationszyklus auf der Nordhalbkugel folgt: Im Frühjahr und Sommer nimmt sie ab, während sie in der kälteren Jahreshälfte ansteigt. Zum anderen konnte er bald nachweisen, dass der durchschnittliche CO2-Gehalt in der Lufthülle der Erde tatsächlich von Jahr zu Jahr zunimmt. Die von Keeling begonnene und bis heute fortgesetzte Messreihe gilt als bedeutendster Umweltdatensatz des 20. Jahrhunderts (Abb. A). Sie zeigte zum ersten Mal, wie die Biosphäre im Rhythmus des jahreszeitlich bedingten Pflanzenwachstums CO2 aus der Atmosphäre aufnimmt und wieder abgibt – und wie der Mensch das Klima des Planeten beeinflusst.

Die Grafik zeigt die Keeling-Kurve. In der x-Achse sind die Jahre, in der y-Achse der CO2-Anteil aufgetragen. Die Keeling-Kurve steigt nicht gleichförmig an, sondern schwingt im Verlauf des Jahres auf und ab. Jeweils am Ende des Frühjahrs klettert der Wert auf einen neuen Höchststand.

Abb. A: Keeling-Kurve. Die Abbildung zeigt die monatliche durchschnittliche CO2-Konzentration der Luft, gemessen auf dem Mauna Loa in einer Höhe von 3.400 Metern in den nördlichen Subtropen. Die Keeling-Kurve steigt nicht gleichförmig an, sondern schwingt im Verlauf des Jahres auf und ab. Jeweils am Ende des Frühjahrs klettert der Wert auf einen neuen Höchststand. Das liegt unter anderem daran, dass die Wälder der Nordhemisphäre im Winter nur wenig Fotosynthese betreiben und monatelang kaum CO2 aus der Luft aufnehmen, während Pflanzen und Böden einen Teil des zuvor aufgenommenen Kohlenstoffdioxids durch die Atmung wieder an die Atmosphäre abgeben. Der langfristige Trend hingegen geht hauptsächlich auf die anthropogen bedingten CO2-Emissionen zurück.
© Author: Oeneis; Data from Dr. Pieter Tans, NOAA/ESRL and Dr. Ralph Keeling, Scripps Institution of Oceanography / CC BY-SA 4.0

Natürliche Kohlenstoffspeicher

Vor Beginn der Industrialisierung herrschte zwischen Aufnahme und Freisetzung von Kohlenstoffdioxid im langfristigen Mittel ein Gleichgewicht. Der Mensch aber stört diese Balance, vor allem durch die Nutzung fossiler Rohstoffe, die heutzutage fast 90 Prozent der weltweiten Treibhausgasemissionen verursacht. Die restlichen zehn Prozent gehen auf das Konto veränderter Landnutzung. Dazu zählen die Umwandlung von Wäldern, Grasländern oder Mooren in landwirtschaftliche Nutzflächen und die Verwendung von Holz als Brennstoff, aber auch Siedlungs- und Straßenbau. Zu Beginn der industriellen Revolution waren die daraus resultierenden Emissionen sogar größer als jene aus dem Verbrennen fossiler Rohstoffe. Erst im Zuge des starken weltweiten Wirtschaftswachstums nach Ende des Zweiten Weltkriegs wurden Öl, Gas und Kohle zur bedeutendsten CO2-Quelle.

Die Erderwärmung durch die anthropogenen CO2-Emissionen wäre heute noch viel höher, gäbe es keine Ökosysteme, die einen Teil des Kohlenstoffdioxids aus der Atmosphäre aufnehmen und speichern. Wie das funktioniert und welche Faktoren dabei eine Rolle spielen, untersucht das Team von Sönke Zaehle, Direktor am Max-Planck-Institut für Biogeochemie in Jena. Die Wissenschaftlerinnen und Wissenschaftler erforschen die Kohlenstoffbilanzen von Landökosystemen. Sie wollen verstehen, wie etwa Wälder, Grasländer und Böden als Quellen und Senken von Treibhausgasen wirken und wie der Mensch und das Klima diese Ökosysteme beeinflussen. „In den vergangenen 60 Jahren haben Ozeane und Landökosysteme etwa die Hälfte der anthropogenen Kohlenstoffdioxid-Emissionen aus der Atmosphäre aufgenommen“, erklärt Sönke Zaehle (Abb. B). „Die Weltmeere nehmen Kohlenstoffdioxid aus der Atmosphäre auf und lösen es in Form von Kohlensäure. Auf dem Land wirken Pflanzen und Böden als Kohlenstoffspeicher.“ Die Forschung von Sönke Zaehle ist Teil eines globalen Monitorings: Klimaforschende aus der ganzen Welt erstellen jedes Jahr eine Bilanz des globalen Kohlenstoffkreislaufs. Sie beziffern im Global Carbon Report unter anderem die anthropogenen CO2-Emissionen auf der einen sowie die CO2-Aufnahme der Landbiosphäre und der Ozeane auf der anderen Seite.

Die Grafik zeigt das globale Kohlenstoffbudget 2023. Etwa die Hälfte des ausgestoßenen CO2 aus fossilen Energiequellen und Landnutzungsänderungen wird von Land- und Ozeansenken absorbiert, der Rest verbleibt in der Atmosphäre und trägt zum Klimawandel bei

Abb. B: Globales Kohlenstoffbudget 2023. Etwa die Hälfte des ausgestoßenen CO2 aus fossilen Energiequellen und Landnutzungsänderungen wird von Land- und Ozeansenken absorbiert, der Rest verbleibt in der Atmosphäre und trägt zum Klimawandel bei.
© Global Carbon Project; Data source: Friedlingstein et al. 2023 Global Carbon Budget 2023. Earth System Science Data. // CC BY 4.0; https://globalcarbonatlas.org

Wenn Senken zu Quellen werden

Bis heute gibt es noch keine Technologien, um Kohlenstoffdioxid in großem Maßstab aus der Atmosphäre zu entfernen. Um den Klimawandel einzudämmen, sind die natürlichen Senken daher von zentraler Bedeutung, denn ohne diese würde die doppelte Menge an CO2 in die Atmosphäre gelangen und die Erde noch schneller aufheizen. Doch die Senken sind zunehmend bedroht – durch menschliche Aktivitäten und auch durch den Klimawandel selbst. Im schlimmsten Fall kann die CO2-Abgabe die Aufnahme sogar übersteigen, sodass Pflanzen und Böden zur Netto-CO2-Quelle werden (s. Geomax 25). Das passierte etwa im Jahr 2023 – bis dahin das heißeste jemals aufgezeichnete Jahr, als die Netto-Kohlenstoffaufnahme an Land zeitweise sogar zusammenbrach: Pflanzen und Böden wandelten sich von Kohlenstoffsenken in -quellen.

Menschliche Aktivitäten wie Abholzung, Brandrodung oder die Trockenlegung von Feuchtgebieten, 2020 aber auch Urbanisierung und die Versiegelung von Böden zerstören wertvolle Kohlenstoffspeicher. Der Klimawandel fördert Hitze, Dürren, Brände und Überschwemmungen, die das Pflanzenwachstum beeinträchtigen und CO2 aus dem Boden freisetzen. Die weltweite landwirtschaftliche Nutzfläche beträgt heute rund fünf Milliarden Hektar – fast 40 Prozent der globalen Landoberfläche. Insbesondere in den Tropen und in anderen Ländern mit starkem Bevölkerungs- und Wirtschaftswachstum haben Landwirtschaft und Holznutzung stark zugenommen. So geraten die natürlichen Kohlenstoffreservoirs immer mehr unter Druck. In Südostasien werden Wälder vor allem für den Anbau von Ölpalmen und Kautschukbäumen großflächig gerodet, in Westafrika für Kakaoplantagen. Im Amazonasgebiet gilt die Produktion von Rindfleisch, Soja und Zuckerrohr als Haupttreiber der Entwaldung (s. Geomax 24).

Der Einfluss von El Niño

Forschungsgruppenleiter Santiago Botía und sein Team am Max-Planck-Institut für Biogeochemie konzentrieren sich unter anderem auf den Amazonas-Regenwald, der mehr als die Hälfte des weltweit noch verbliebenen tropischen Regenwalds ausmacht. Die Forschenden möchten herausfinden, welche Rolle der Wald als Kohlenstoffsenke spielt, was seine Speicherkapazität beeinflusst und welche Prozesse sich auf den Gehalt von CO2, Methan und Lachgas in der Atmosphäre auswirken. Um die Kohlenstoffflüsse nachzuverfolgen, kombinieren sie Messungen von Treibhausgasen an Bodenstationen oder per Flugzeug mit Computersimulationen, die den Gastransport in der Atmosphäre abbilden. Wichtige Messdaten liefert das 325 Meter hohe Amazon Tall Tower Observatory (ATTO) mitten im brasilianischen Regenwald (s. Titelbild). Ziel ist es, Quellen und Senken von Kohlenstoff im Amazonasgebiet zu bestimmen.

„Grundsätzlich gilt der Amazonas-Regenwald als Kohlenstoffsenke“, sagt Santiago Botía, „Doch es gibt Hinweise, dass diese Senke durch menschliche Eingriffe sowie klimabedingten Trockenstress schwächer geworden ist.“ Eine wichtige Rolle dabei spielt El Niño (s. Kasten). El Niño ist ein natürliches Klimaphänomen, das die Folgen des menschengemachten Klimawandels wie Hitzewellen, Dürren oder extreme Niederschläge verstärken kann. Botía und sein Team haben gezeigt, dass die Dürre im Jahr 2023 das Pflanzenwachstum und damit die Kohlenstoffspeicherung beeinträchtigt hat (Abb. C): „Während eines El Niño wird insbesondere in den Tropen weniger Kohlenstoff gebunden und infolgedessen ist der CO2-Anstieg in der Atmosphäre in der Regel höher als in anderen Jahren“, sagt der Max-Planck-Forscher. Als weiteres Beispiel nennt er den starken El Niño in den Jahren 2015 und 2016. „Damals gab es viele Feuer, die zahllose Bäume vernichtet haben, zusätzlich hat der Wald wegen Hitze und ausbleibender Regenfälle weniger CO2 aufgenommen.“

Die Abbildung zeigt, dass der Regenwald CO2 abgeben kann. Von Januar bis April 2023 war die Kohlenstoffaufnahme höher als üblich. Das änderte sich im Mai, als der Regenwald begann, mehr CO2 freizusetzen, wobei die höchsten Werte im Oktober gemessen wurden. Da die CO2-Emissionen durch Brände innerhalb der normalen Werte der letzten zwei Jahrzehnte lagen, führen die Forschenden die Anomalie auf eine verringerte CO2-Aufnahme durch den Regenwald zurück.

Abb. C: Wenn der Regenwald zur CO2-Quelle wird. Die gestrichelte rote Linie zeigt den zeitlichen Verlauf der CO2-Aufnahme bzw. -Abgabe des Amazonasgebiets für das Jahr 2023. Der schattierte Bereich gibt die normalen Werte der letzten zwei Jahrzehnte (2003-2023) an. Die gestrichelte schwarze Linie ist die Netto-Null-Linie, d.h. CO2-Aufnahme und -Abgabe sind ausgeglichen. Von Januar bis April 2023 war die Kohlenstoffaufnahme höher als üblich. Das änderte sich im Mai, als der Regenwald begann, mehr CO2 freizusetzen, wobei die höchsten Werte im Oktober gemessen wurden. Da die CO2-Emissionen durch Brände innerhalb der normalen Werte der letzten zwei Jahrzehnte lagen, führen die Forschenden die Anomalie auf eine verringerte CO2-Aufnahme durch den Regenwald zurück.
© S. Botía, MPI für Biogeochemie / CC BY 4.0

Dass El Niño dabei auch zu Veränderungen der jährlichen Wachstumsrate des CO2-Gehalts in der Atmosphäre führen kann, belegt eine gemeinsame Studie von Forschenden des Max-Planck-Instituts für Biogeochemie und der Universität Leipzig: Langzeitdaten hatten gezeigt, dass der CO2-Gehalt in der Atmosphäre zwischen 1959 und 2011 phasenweise besonders stark angestiegen war. Als Ursache vermutete man langfristige klimabedingte Veränderungen des Kohlenstoffkreislaufs und damit des globalen Klimasystems. Die Forschenden überprüften diese Annahme anhand von Computersimulationen – und kamen zu einem anderen Ergebnis: Der hohe Anstieg lässt sich allein mit dem vermehrten Auftreten von El Niño-Ereignissen in den 1980er- und 1990er-Jahre erklären. Hierunter fallen auch die extremen El Niño-Phasen von 1982/83 und 1997/98, die starke Dürren und Hitzewellen in den Tropen mit sich brachten. Während dieser Phasen nahm der CO2-Gehalt in der Atmosphäre überraschend schnell zu. Die schnelle Zunahme hängt damit zusammen, dass während der El Niño-Phasen (aber auch anderer klimatischer Extremereignisse) gehäuft auftretende Brände und andere Störungen schnell viel Kohlenstoff freisetzen – und so die langfristige, vergleichsweise langsame Kohlenstoffaufnahme der ungestörten Ökosysteme kompensieren. In der Ökologie ist dies bekannt als die sogenannte „slow-in, fast-out-Dynamik“ des Kohlenstoffkreislaufs. Die langfristige Konsequenz davon ist, dass sich Veränderungen in der Häufigkeit von El Niños auf den CO2-Gehalt der Atmosphäre auswirken und so eine Rückkopplung zum Klimawandel verursachen können.

Kohlenstoffsenken unter Beobachtung

Das Team von Sönke Zaehle möchte mit seiner Arbeit vor allem dazu beitragen, künftige Klimamodelle zu verbessern: „Um verlässlichere Prognosen für die Zukunft zu machen, ist es entscheidend, die räumliche und zeitliche Dynamik der Kohlenstoffsenken möglichst genau zu kennen“, sagt Zaehle. Das gilt auch für Strategien, die auf Klimaneutralität abzielen: Der europäische „Green Deal“ etwa, der Netto-Null-Emissionen bis zum Jahr 2050 anstrebt (s. Geomax 29), kalkuliert die Kohlenstoffaufnahme durch Landökosysteme wie Wälder mit ein. Doch auch in unseren Breiten verlieren Wälder zunehmend ihre Fähigkeit, Kohlenstoff zu speichern: Im Jahr 2022 etwa wurden in Europa rekordverdächtige Temperaturen gemessen. Fast 30 Prozent des Kontinents – insgesamt rund drei Millionen Quadratkilometer – waren von einer schweren Sommertrockenheit betroffen. Ein Forschungsteam unter Beteiligung des Max-Planck-Instituts für Biogeochemie wies nach, dass die Netto-Kohlenstoffaufnahme der Biosphäre in diesem Gebiet stark verringert war. Einige Wälder in Frankreich setzten im Sommer durch Trockenstress und Waldbrände sogar Kohlenstoff frei. „Solche temporären Schwankungen der Kohlenstoffsenken werden bislang kaum berücksichtigt“, sagt Zaehle. Ein Ziel des europäische Erdbeobachtungsprogramms Copernicus ist es daher, die Kohlenstoffbilanz kontinuierlich zu überwachen.

Ökosysteme stärken

Studien wie die der Jenaer Wissenschaftlerinnen und Wissenschaftler zeigen, wie fragil die natürlichen Kohlenstoffsenken sind. Dass wir uns auch weiterhin auf sie verlassen können, ist keineswegs sicher: „Inwieweit die terrestrischen Kohlenstoffsenken ihre Funktion als Klimapuffer in Zukunft noch erfüllen  können, ist unklar“, sagt Santiago Botía. „Bei der derzeitigen globalen Erwärmung sind extreme Dürrejahre häufiger zu erwarten und werden wohl Teil der neuen  Normalität“. Es ist daher entscheidend, dass wir uns auf diese Veränderungen vorbereiten und die Funktion der Ökosysteme erhalten. „Wichtig ist, die natürlichen Kohlenstoffsenken zu stärken – zum Beispiel durch Aufforstung von  Wäldern, die Wiedervernässung von Mooren und eine nachhaltige Landwirtschaft, die den Kohlenstoffgehalt von Böden erhöht und weniger Treibhausgase produziert“, sagt Sönke Zaehle. „Neben dem Erhalt der natürlichen Senken ist aber eine Reduzierung der fossilen Emissionen unerlässlich, um den Klimawandel zu stoppen. Jede Tonne Kohlenstoffdioxid, die wir vermeiden, zählt.”

Die sogenannte El Niño-Südliche Oszillation (ENSO) ist ein gekoppeltes Zirkulationssystem von Ozean und Atmosphäre im tropischen Pazifik. Normalerweise schieben die Passatwinde das Oberflächenwasser entlang des Äquators von der Westküste Südamerikas  in Richtung Südostasien. Dort steigt der Meeresspiegel infolgedessen um gut einen halben Meter an. Vor Südamerika erzeugt diese westwärtige Strömung einen Sog, der kaltes Tiefenwasser zur Oberfläche strömen lässt. Das kalte Wasser heizt sich auf dem Weg nach Westen auf, was vor Südostasien für starke Verdunstung und ein regenreiches Klima sorgt. Etwa alle fünf Jahre passiert es, dass  sich die Passatwinde aufgrund von Veränderungen der Luftdruckverhältnisse über dem Pazifik abschwächen oder ihre Richtung  sogar umkehren. Dadurch strömt warmes Wasser aus dem Westpazifik nach Osten. An der sonst trockenen Westküste Südamerikas kommt es dadurch zu starken Niederschlägen, während in Südost-asien weniger Regen fällt. Weil das Phänomen seinen Höhepunkt typischerweise um Weihnachten erreicht, wird es El Niño, spanisch „das Christkind“, genannt.

 

Abbildungshinweise:

Titelbild: © P. Papastefanou / MPI-BGC
Abb. A: © Author: Oeneis; Data from Dr. Pieter Tans, NOAA/ESRL and Dr. Ralph Keeling, Scripps Institution of Oceanography / CC BY-SA 4.0
Abb. B: © Global Carbon Project; Data source: Friedlingstein et al. 2023 Global Carbon Budget 2023. Earth System Science Data. // CC BY 4.0; https://globalcarbonatlas.org
Abb. C: © S. Botía, MPI für Biogeochemie / CC BY 4.0

Der Text wird unter CC BY-NC-SA 4.0 veröffentlicht.

GEOMAX Ausgabe 30, Februar 2025; Text: Tim Kalvelage; Redaktion: Elke Maier, Tanja Fendt

Der Klimawandel hinterlässt seine Spuren: Dürren und Starkregen im Wechsel beeinflussen die Qualität unseres Grundwassers, weil die ausgetrockneten Böden das Regenwasser schlechter filtern. Ein Gespräch mit Gerd Gleixner vom Max-Planck-Institut für Biogeochemie in Jena.

Themen im Podcast:
min 1:50 Wie gefährden Extremereignisse unser Trinkwasser?
min 2:50 Standorte für die Probenentnahme
min 4:14: Verwendete Messtechniken
min 5.24: Ergebnisse der Forschung
mih 6.30: Auswirkung des Hitzejahres 2018
min 8:08: Welche Stoffe gelangen ins Trinkwasser?
min 11:00: Auswirkungen / Folgerungen
min 13:40: Nächste Schritte in der Forschung

Zum Podcast (16 min) vom 6. Februar 2025 © detektor.fm / Max-Planck-Gesellschaft

Hintergründe zur Langzeitstudie


Foto: © Drbouz / istock

Jahrzehntelang galt das Genom als unveränderlicher Bauplan, der bereits bei der Geburt festgelegt ist. Gene waren Schicksal: Sie sollten Aussehen, Persönlichkeit und Krankheitsrisiken bestimmen. Heute wissen wir, dass unsere Gene in Wechselwirkung mit verschiedenen Faktoren stehen – Prozesse, welche die Epigenetik erklärt. Alexander Meissner vom Max-Planck-Institut für molekulare Genetik erklärt Wissenschaftsjournalistin Alice Lanzke, was sich genau dahinter verbirgt, welche Prozesse dafür sorgen, dass Gene an- oder ausgeschaltet werden und welchen Einfluss Umweltfaktoren dabei spielen.

Audiodatei | 20 min, August 2024

© MPG / CC BY-NC-ND 4.0