Wie Forscher filigrane Formen aus Metall produzieren

Drucken in drei Dimensionen

Bild vergrößern

"Jetzt kann man die Minerva schön sehen", sagt Eric Jägle. Unter dem Fenster des „3D-Druckers" verschweißt ein hin und her rasender, glühender Laserlichtpunkt feines Me­tallpulver zum Kopfrelief der antiken Göttin. Es entsteht eine Münze aus Edelstahl mit Logo der Max-Planck-Ge­sellschaft, als Geschenk für Besucher. Wir befinden uns in einem Labor im Max-Planck-Institut für Eisenforschung in Düsseldorf. Jägle forscht mit seiner Gruppe daran, Metall-Werkstoffe für den „3D-Druck" zu verbessern. Das ist alles andere als einfach, lernt man bei ihm. Schließlich schmilzt das Metall im Laserfokus bei mehreren Tausend Grad kurz auf und wird praktisch sofort wieder fest. Dabei kann viel schiefgehen. Jede neue Anwendung im „3D-Druck" von Metallen erfordert deshalb Grundlagenforschung.

Das dreidimensionale (3D) Drucken von Kunststoffen ist längst Alltag. Der nächste Schritt wäre das Drucken von Metallen. Aller­dings lässt Eric Jägle, der eine Werkstoffwissenschaftsgruppe leitet, den Traum vom heimischen Metalldrucker gleich platzen. Das schrankgroße Lasergerät kostet schon in der Basisversion 150.000 Euro. „Und wenn man Zusatzwünsche hat, ist man schnell bei einer halben Million Euro", sagt Jägle.

Trotzdem ist das 3D-Drucken von Metallen keine Zukunftsvision mehr, sondern industrielle Realität. Wer kürzlich eine Krone als Zahnersatz bekam, beißt sehr wahrscheinlich mit einem 3D-gedruckten Metallteil unter der Keramik ins Brötchen. Immer, wenn es um Einzelanfertigungen oder kleine Stückzahlen geht, ist das 3D-Drucken von Metallteilen interessant. Vor allem kann es beliebig kompliziert geformte Werkstücke in einem Durchgang herstellen. Das ist auch ideal für verschachtelte Bauteile, die bislang aus vielen Einzelteilen zusammengeschweißt werden müssen. Anwendungsgebiete sind neben der Medizin die Luft- und Raumfahrt, Kraftwerksturbinen, Motorsport, Ersatzteile für Oldtimer, auch die Bahn nutzt diese Technik.

GEDRUCKTE RAKETEN-BRENNKAMMERN

Da sich beliebige Formen 3D-drucken lassen, wird extremer Leichtbau möglich. Wie bei verästelten Pflanzenstrukturen befindet sich in solchen Leichtbauteilen nur dort Material, wo es Kräfte aufnehmen muss.  „Deshalb kommen heute auch zum Beispiel komplette Raketen-Brennkammern für die Raumfahrt aus dem Drucker“, erklärt Jägle. Der Werkstoffwissenschaftler beantwortet zudem die Frage, warum das „3D-Drucken“ hier in Anführungszeichen geschrieben ist. Industrie und Forschung sprechen lieber von „Additiver Fertigung“ als vom Drucken. Es gibt nämlich viele verschiedene Verfahren, computergesteuert dreidimensionale Objekte aus Metall aufzubauen.

Als erstes erklärt Jägle, warum diese Technik „additiv" heißt, im Gegensatz zu „subtraktiv". „Subtraktiv ist zum Beispiel die Bildhauerei", erklärt er, „so wie Michelangelo seinen berühmten David aus einem Marmorblock herausgearbeitet hat." In der In­dustrie entspricht das dem computergesteuerten Herausfräsen eines Teils aus einem Metallblock. Additiv heißt hingegen, dass man etwas hinzufügt statt wegnimmt, also aufbaut. Allerdings trifft das auch auf das Gießen von geschmolzenem Metall in eine Gussform zu, was die Menschen seit der Bronzezeit be­herrschen. Also fehlt noch etwas in der Definition. „Das Ganze muss man auch noch computergesteuert machen", zählt Jägle weiter auf, „und das ohne Werkzeug!"

Bei der Additiven Fertigung geht es also darum, ein im Compu­ter entworfenes, dreidimensionales Teil möglichst formgetreu aus einem Material aufzubauen. Sie soll vollkommen flexibel beliebige Formen produzieren können. Heute gibt es verschie­dene additive Techniken für Metalle, die unterschiedlich weit entwickelt sind. Am weitesten verbreitet sind die sogenannten Pulverbett-Verfahren, bei denen ein starker Infrarotlaser oder ein Elektronenstrahl Metallpulver verschweißt. Der Laserdru­cker im Düsseldorfer Labor gehört dazu.

Das Prinzip ist einfach zu verstehen. Als Baumaterial dient feines Metallpulver, weshalb dieses Verfahren Laser Powder Bed Fusion, kurz L-PBF, heißt—also auf Deutsch Laser-Pulverbett-Schmelzen. Das Pulver erzwingt strenge Sicherheitsvorkehrun­gen, wenn der Drucker geöffnet wird. Schließlich kann das Pul­ver, wenn es sich als Staubwolke in der Luft verteilt, explodieren. Ursache ist die riesige Gesamtoberfläche aller Metallpartikel zusammengenommen, die im Kontakt mit dem Sauerstoff der Luft schlagartig oxidieren kann. Außerdem ist das Einatmen gefährlich. Deshalb darf man den Drucker nur öffnen, wenn man Schutzanzug und Atemmaske trägt, und man muss sehr sauber arbeiten.

Zur Redakteursansicht
loading content