Wie Forscher das schwarze Loch in der Galaxis durchleuchten

Tief im galaktischen Zentrum warten noch mehr spannende Entdeckungen auf die Astronomen. Diese haben schon vor einigen Jahren damit begonnen, die weitere Umgebung des schwarzen Lochs zu studieren. Denn dort ziehen jede Menge Sterne ihre Bahnen (Abb. C). Aus dem Vergleich von mehreren, zu unterschiedlichen Zeitpunkten gewonnenen scharfen Aufnahmen mit neuen Beobachtungstechniken bestimmten die Forscher die Eigenbewegungen der Sterne sowie mittels des Dopplereffekts deren Radialgeschwindigkeiten. Diesen Effekt kennen wir aus dem Alltag, wenn etwa ein Rettungswagen an uns vorbeifährt und die Tonhöhe des Martinshorns an- und abschwillt. Das bedeutet gleichzeitig eine Verschiebung der Wellenlänge in den kurz- beziehungsweise langwelligen Bereich. Dies gibt es auch bei Lichtwellen, wobei man dann von Blau- oder Rotverschiebung spricht.

Abb. C: Galaktischer Bienenschwarm<br />Die Simulation zeigt die Sternenbahnen nahe dem supermassereichen schwarzen Loch im Herzen der Milchstraße. Bild vergrößern
Abb. C: Galaktischer Bienenschwarm
Die Simulation zeigt die Sternenbahnen nahe dem supermassereichen schwarzen Loch im Herzen der Milchstraße.

Die erwähnte Eigenbewegung bezeichnet die Winkelgeschwindigkeit am Himmel, die Radialgeschwindigkeit das Tempo entlang der Sichtlinie zur Erde. Die Analyse beider Komponenten ergab die wahren Bewegungen der Sterne im Raum. Als „Star“ auf den Fotos entpuppte sich S2: Der Stern nähert sich der Radioquelle SgrA* bis auf etwa 17 Lichtstunden oder die dreifache Distanz zwischen Sonne und Neptun. S2 läuft auf seiner hochelliptischen Keplerbahn und wird dabei bis zu 25 Millionen Kilometer pro Stunde schnell. Für die Umrundung des schwarzen Lochs benötigt er etwa 15 Jahre.

Im Mai 2018 sollte S2 wieder einmal in der geringsten Entfernung von 14 Milliarden Kilometern am Massemonster vorbeiziehen – eine perfekte Gelegenheit, um in dieser Region mit der stärksten Schwerkraft unserer Galaxis die allgemeine Relativitätstheorie zu testen. Wieder lagen die Astronomen mit dem Instrument Gravity auf der Lauer. Und erneut gelang eine bemerkenswerte Beobachtung: Der Stern zeigte eine Rotverschiebung, die nicht vom Dopplereffekt herrührt. Denn unabhängig von ihm sollte nach Einsteins Theorie auch im Schwerefeld eine Rotverschiebung auftreten, wenn sich Licht dort bewegt und gewissermaßen dagegen ankämpft. Diesem Effekt unterlag die Strahlung des Sterns S2: Die Forscher registrierten genau diese Gravitations-Rotverschiebung (Titelbild).

Das schwarze Loch in der Milchstraße ist aber nicht nur ein „Freilandlabor“ für die Physik der Schwerkraft, sondern ein Modellfall: Offensichtlich verbergen sich auch in den Zentren der meisten anderen Spiralgalaxien mit stellarem Kernbereich sowie in elliptischen Galaxien solche schwarzen Löcher. Dabei gilt: Je massereicher der Kern, desto massereicher das schwarze Loch. Diese enge Korrelation deutet auf eine gemeinsame Genese hin. Doch über die Geburten der Galaxien rätseln die Forscher noch, ebenso über die Entwicklung einer Schwerkraftfalle mit einigen Millionen oder gar Milliarden Sonnenmassen. Ein Szenario sieht so aus: Schon wenige 100 Millionen Jahre nach dem Urknall existierten Sterngiganten mit bis zu 1000 Sonnenmassen. Sie explodierten als Meganovae und hinterließen entsprechend massereiche schwarze Löcher. Diese sammelten sich in Energiemulden, verschmolzen miteinander und legten durch das Verschlucken von Gas weiter an Gewicht zu, wuchsen also zu supermassiven schwarzen Löchern heran.

Bis vor wenigen Jahren dachten die Wissenschaftler, es gebe im Wesentlichen nur zwei Klassen von schwarzen Löchern: stellare und supermassereiche. Dann wurden am 14. September 2015 Gravitationswellen entdeckt, die offenbar aus der Kollision von zwei schwarzen Löchern mit 29 und 36 Sonnenmassen stammten. Deren Entstehung liegt ebenso im Dunkeln wie die von schwarzen Löchern mit einigen Hundert oder Tausend Sonnenmassen, welche die Forscher im All ebenfalls gefunden haben wollen. Nicht zuletzt mit der Entdeckung von Gravitationswellen und den Messungen im Herzen der Milchstraße hat die Ära der Beobachtung schwarzer Löcher begonnen. Die Astronomen im Kontrollraum auf dem Paranal haben wohl noch manche aufregende Nacht vor sich ...

Bild vergrößern

BIS ZUM HORIZONT

Ein schwarzes Loch direkt beobachten? Das klingt nach Fiction, doch jetzt wird daraus Science. Ein Radioobservatorium der Superlative soll es möglich machen. Es heißt Event Horizon Telescope (EHT) und besteht aus vielen, über die gesamte Erdkugel verteilten Stationen. Die Technik dafür ist die Very Long Baseline Interferometry. Dabei werden die einzelnen Antennen zusammengeschaltet und so zu einem virtuellen Riesenteleskop von der Größe unseres Planeten vereint. Die Anlage empfängt Strahlung im Millimeterbereich des elektromagnetischen Spektrums und liefert eine Winkelauflösung, bei der man einen Tennisball auf dem Mond sehen könnte. Das EHT nimmt unter anderem SgrA* im Zentrum der Milchstraße ins Visier. Dabei registriert es jene Lichtteilchen, die um Haaresbreite den Fängen des schwarzen Lochs entkommen sind. Auf dem am Computer rekonstruierten Bild sollte sich der Ereignishorizont als „Schatten“ direkt abbilden. Auch in fernen Milchstraßensystemen wie M 87 wollen die Astronomen die Umgebung von schwarzen Löchern untersuchen, insbesondere die ausströmenden Jets energiereicher Teilchen.

TECHMAX Ausgabe 26, Herbst 2018, Redaktion: Christina Beck, Autor: Helmut Hornung

Zur Redakteursansicht
loading content