Wie Forscher das schwarze Loch in der Galaxis durchleuchten

Ähnlich einem Schlafenden, der eine weiche Matratze eindellt, krümmen nach Einsteins allgemeiner Relativitätstheorie Massen den Raum. Die extrem starken Gravitationsfelder eines schwarzen Lochs sollten den Raum so verbiegen, dass er sich trichterförmig abkapselt. Karl Schwarzschild selbst hat die Struktur des Raums um ein ruhendes schwarzes Loch beschrieben – das es in der Natur wegen der Erhaltung des Drehimpulses wohl gar nicht gibt. Ein Teil des Drehimpulses wird zwar in Form von Gravitationswellen abgestrahlt (siehe auch TECHMAX 4), gleichwohl sollte das schwarze Loch rotieren. Erst in den 1960er-Jahren gelang es den Theoretikern, allen voran dem neuseeländischen Mathematiker Roy Kerr, die Metrik eines solchen Objekts in Formeln zu fassen.

Abb. A: Hinter dem Horizont<br />Die Grafik zeigt ein rotierendes schwarzes Loch. Die Ergosphäre bezeichnet jenen Bereich, in dem jedes beliebige Objekt mitrotieren muss. Der Ereignishorizont ist so etwas wie die Oberfläche des schwarzen Lochs; was dahinter verschwindet, ist im wahrsten Sinne aus der Welt. Bild vergrößern
Abb. A: Hinter dem Horizont
Die Grafik zeigt ein rotierendes schwarzes Loch. Die Ergosphäre bezeichnet jenen Bereich, in dem jedes beliebige Objekt mitrotieren muss. Der Ereignishorizont ist so etwas wie die Oberfläche des schwarzen Lochs; was dahinter verschwindet, ist im wahrsten Sinne aus der Welt.

Wie also sieht ein schwarzes Loch aus? Vereinfacht gesagt, liegt ganz außen eine abgeplattete Kugelfläche, die Ergosphäre. Sie umschließt den kugelförmigen Ereignishorizont, gleichsam die Grenzfläche des schwarzen Lochs. Was sich jenseits von ihm abspielt, ist von außen unzugänglich. Weiter innen liegt der innere Horizont, auch Cauchy-Horizont genannt. Im Zentrum sitzt die Singularität, die sich mit den Gesetzen unserer Physik nicht beschreiben lässt. Bei einem schwarzen Loch, wie es Roy Kerr durchgerechnet hat, ist das eine Ringsingularität – aber ohne Ausdehnung und mit dem Radius null! So ein Konstrukt kann man sich beim besten Willen nicht vorstellen (Abb. A). Einfacher ist das mit dem Schicksal von Gasteilchen, die mit langsamer Geschwindigkeit die oben genannte Ergosphäre überschreiten. Sie landen dann auf spiralförmigen Bahnen und ziehen immer engere Kreise. Die Gravitationsenergie wächst, während das schwarze Loch seinerseits Drehimpuls einbüßt. Fällt also Gas auf ein schwarzes Loch, heizt es sich durch diesen Mechanismus sehr stark auf. Am heißesten wird die Materie auf der letzten stabilen Umlaufbahn (last stable orbit), wo Temperaturen um die 100 Milliarden Grad Celsius auftreten. Doch dort verharrt das Gas nicht lange, nach etwa einer halben Stunde wilder Fahrt verschwindet es hinter dem Ereignishorizont.

<strong>Abb. B: Zoom ins Zentrum</strong><br />Mit einer Infrarotkamera am Very Large Telescope in Chile blicken Astronomen ins Herz der Milchstraße. Die beiden gelben Pfeile in der Mitte markieren die Position der Radioquelle SgrA*. Bild vergrößern
Abb. B: Zoom ins Zentrum
Mit einer Infrarotkamera am Very Large Telescope in Chile blicken Astronomen ins Herz der Milchstraße. Die beiden gelben Pfeile in der Mitte markieren die Position der Radioquelle SgrA*.

Genau das haben die Astronomen im Kontrollraum des Very Large Telescope auf dem Andengipfel Cerro Paranal live verfolgt! Aus gutem Grund beobachteten die Forscher das Herz unserer Galaxis (Abb. B). Denn darin hatte eine Gruppe um Reinhard Genzel, Direktor am Garchinger Max-Planck-Institut für extraterrestrische Physik, in den 1990er-Jahren ein gigantisches schwarzes Loch entdeckt. Es besitzt ungefähr vier Millionen Sonnenmassen und kann nicht durch eine einzige Supernova entstanden sein. Daher sprechen die Forscher nicht von einem stellaren, sondern von einem supermassiven schwarzen Loch. Nach der lateinischen Bezeichnung des Sternbilds Schütze, in dem der Mittelpunkt des Milchstraßensystems von der Erde aus gesehen liegt, heißt das Objekt „Sagittarius A Stern“ (SgrA*). Es sitzt innerhalb eines dichten Sternhaufens mit einer sehr kompakten, ungewöhnlich hellen zentralen Radioquelle. Deren Durchmesser beträgt weniger als 300 Millionen Kilometer und ist damit kleiner als der Durchmesser der Erdbahn um die Sonne.

Doch handelt es sich bei SgrA* wirklich um ein schwarzes Loch? Angesichts der hohen Masse auf engem Raum erscheint dies als sehr wahrscheinlich. „Aber zwischen Plausibilität und physikalischer Sicherheit gibt es doch einen Unterschied“, sagt Reinhard Genzel. „Daher denken wir uns alle möglichen Tests aus. Das galaktische Zentrum bietet hier fantastische Möglichkeiten.“ War die eingangs beschriebene Live-Beobachtung – also das Verschlucken von Materie – vor ein paar Jahren eher Zufall, so haben die Astronomen in den vergangenen Monaten gezielt nach einem solchen Prozess gesucht. Und kürzlich sind sie fündig geworden!

VIER TELESKOPE WERDEN ZU EINEM

Geholfen haben ihnen dabei wiederum das Very Large Telescope und ein sehr komplexes Instrument namens Gravity. Mit ihm nutzen die Forscher alle vier Acht-Meter-Spiegel des VLT gleichzeitig. Dieses Verfahren heißt Interferometrie. Bei ihm werden die Wellen ein und desselben Objekts aus den vier Einzelteleskopen überlagert, wodurch dieses im Ergebnis schärfer erscheint. In der Radioastronomie ist die Methode schon seit Jahrzehnten etabliert, im optischen Licht dagegen nicht. Daher hat das Max-Planck-Institut für extraterrestrische Physik unter Leitung von Frank Eisenhauer zusammen mit dem Max-Planck-institut für Astronomie, der Europäischen Südsternwarte, der Universität Köln, zwei französischen CNRS-Instituten sowie Instituten in Porto und Lissabon Gravity entwickelt. Dieses Instrument verarbeitet die Signale der vier Einzelteleskope und verbessert im Infrarotbereich die Detailauflösung enorm. Das heißt, das VLT könnte dank Gravity zwei nebeneinanderliegende Zwei-Euro-Münzen auf dem Mond sichtbar machen.

Mit Gravity haben die Astronomen um Reinhard Genzel gleichsam den Rand des vermeintlichen schwarzen Lochs ins Visier genommen. Der Theorie nach müssten die Elektronen des Gases, das sich dem Ereignishorizont nähert, beschleunigt werden und dadurch die Helligkeit zunehmen. In der nur wenige Lichtstunden kleinen Region um das schwarze Loch herrschen chaotische Verhältnisse ähnlich wie in irdischen Gewittern oder Strahlungsausbrüchen auf der Sonne. Dabei spielen auch noch starke Magnetfelder eine Rolle, denn das Gas ist elektrisch leitend, also ein Plasma. Dieses sollte sich schließlich als flackernder heißer Fleck zeigen, der das schwarze Loch auf der letzten stabilen Bahn umkreist. Tatsächlich: Dank Gravity sahen die Forscher gleich drei solcher Flares, hot spots genannt. „Alle hatten sie dieselben Radien und dieselben Umlaufperioden“, sagt Genzel. Wie erwartet, war das Gas nach 30 Minuten verschwunden, gleichsam verschluckt vom schwarzen Loch. Nicht nur bedeutet diese Beobachtung ein ziemlich starkes Indiz für die Existenz des dunklen Massemonsters im Herzen der Galaxis. Zudem können die Forscher anhand derartiger Messungen entscheiden, ob es sich um ein ruhendes Schwarzschild-Loch oder ein rotierendes Kerr-Loch handelt. Die bisher gesammelten Hinweise sprechen für Letzteres.

Zur Redakteursansicht
loading content