Wie Forscher das schwarze Loch in der Galaxis durchleuchten

Massemonster im All

Bild vergrößern

Cerro Paranal, 2635 Meter über Meereshöhe. Der Raum liegt im Halbdunkel. Auf den Bildschirmen flimmern Zahlen und Kurven. Ähnlich Piloten in der Kanzel einer Düsenmaschine tauschen die Menschen vor den Monitoren routiniert Informationen aus, raunen sich gelegentlich Nummern oder Buchstabenkürzel zu. Draußen spähen unterdessen vier gigantische Spiegelteleskope zum Himmel über den chilenischen Anden. Seit Stunden überträgt eines der Fernrohre Bilder aus dem Herzen der Milchstraße auf den Beobachtungsmonitor. Weit nach Mitternacht ein Ausruf des Erstaunens: „Was macht der denn da!“ Ein Lichtpunkt war aus dem Nichts aufgetaucht und wenig später spurlos verschwunden. Was hat das zu bedeuten? Bald steht fest: Die Wissenschaftler haben das schwarze Loch im Zentrum der Milchstraße bei einer Mahlzeit ertappt.

Der Beginn eines Science-Fiction-Films? Nein, die Szene ist Realität. Abgespielt hat sie sich im Kontrollraum des Very Large Telescope (VLT) der Europäischen Südsternwarte. Die Protagonisten: ein internationales Team von Astronomen um Reinhard Genzel vom Max-Planck-Institut für extraterrestrische Physik in Garching und – ein schwarzes Loch. Was verbirgt sich hinter einem solchen Massemonster?

Schon der britische Naturforscher John Mitchell spekulierte 1783 über „dunkle Sterne“. Ein paar Jahre später vermutete der französische Mathematiker Pierre-Simon Laplace, dass diese Objekte tatsächlich existieren. In Gedanken ließ er eine Materiekugel bei gleichbleibender Masse so lange schrumpfen, bis die Gravitationsbeschleunigung an ihrer Oberfläche so stark anwuchs, dass die Fluchtgeschwindigkeit den Wert der Lichtgeschwindigkeit erreichte. Unter diesen Verhältnissen entkommen nicht einmal mehr Photonen den Schwerkraftfesseln des Körpers: Er wird für den Betrachter unsichtbar, gleichsam zum schwarzen Loch.

Der Astronom Karl Schwarzschild berechnete Anfang des 20. Jahrhunderts mithilfe der kurz zuvor von Albert Einstein vorgestellten allgemeinen Relativitätstheorie als Erster den Radius einer Kugel, die das oben genannte Kriterium erfüllt, auf deren Oberfläche also die Fluchtgeschwindigkeit gleich der Lichtgeschwindigkeit (ungefähr 300.000 Kilometer pro Sekunde) ist. Die Erde etwa müsste man dazu auf die Größe einer Erbse zusammenquetschen, ihr Schwarzschildradius beträgt knapp einen Zentimeter! Die Überlegungen von Laplace und die Berechnungen von Schwarzschild blieben zunächst theoretisch. Erst als die Wissenschaftler in den 1930er-Jahren die Physik der Sterne zu verstehen begannen, rückten die schwarzen Löcher allmählich ins Blickfeld.

Um einen solchen kosmischen Exoten hervorzubringen, braucht es einen Stern mit mehr als der achtfachen Masse unserer Sonne. Am Ende seines Lebens angekommen, verbrennt der Gasgigant in mehreren übereinanderliegenden Schalen chemische Stoffe. Im Zentrum dieser „Zwiebel“ produziert der Fusionsreaktor bei Temperaturen von einer Milliarde Grad zunehmend komplexere Elemente wie Sauerstoff und Silizium. Kurz vor dem Sternentod geht es immer schneller: Innerhalb von wenigen Monaten und später nur mehr einigen Tagen werden Nickel, Kobalt und schließlich Eisen erzeugt.

DER STERN GERÄT AUS DEM GLEICHGEWICHT

Damit ist das Ende erreicht: Weil Eisen die höchste Bindungsenergie pro Kernbaustein besitzt, lässt sich aus seiner Fusion keine Energie mehr gewinnen. Der stellare Ofen erlischt, was die Gaskugel aus dem Gleichgewicht bringt. Das Wechselspiel zwischen dem Druck der Sternmaterie, der nach außen wirkt, und dem nach innen gerichteten Gravitationsdruck wird empfindlich gestört. Der Kern des Sterns bricht unter seinem eigenen Gewicht in sich zusammen. Die  äußere Hülle dagegen schießt ins All und leuchtet als Supernova hell auf.

Gleichzeitig erreicht die Dichte im Zentrum des Sterns astronomisch hohe Werte. Dies führt dazu, dass elektrisch negativ geladene Elektronen in die elektrisch positiv geladenen Protonen gequetscht werden und Neutronen bilden. Auf diese Weise formt sich eine Kugel mit ungefähr 20 Kilometern Durchmesser und der Masse unserer Sonne – ein Neutronenstern. Auf der Erde würde ein Teelöffel seiner Materie einige Milliarden Tonnen wiegen. Weil der Drehimpuls, das Produkt aus Trägheitsmoment und Winkelgeschwindigkeit, nicht verloren geht, beschleunigt sich die eher gemächliche Rotation des vormals gesunden Sterns in dem Maße, wie sich sein kollabierter Kern verdichtet und schrumpft. Wegen der immensen Fliehkräfte verlassen ständig Teilchen die Oberfläche, werden in dem starken Magnetfeld beschleunigt und senden in zwei gebündelten Strahlungskegeln sogenannte Synchrotronstrahlung aus. Überstreicht dieser kosmische Leuchtturm die Erde, scheint der Stern im Millisekundentakt zu blinken, man spricht von einem Pulsar.

Es geht aber noch dichter. Wenn die kollabierte Restmasse des gestorbenen Sterns etwa drei Sonnenmassen überschreitet, dann zieht sich die ausgebrannte Kugel völlig in sich zusammen – bis das exotische Gebilde schließlich die Größe des doppelten Schwarzschildradius erreicht. Bei diesem Prozess gehen alle Strukturen verloren, ein schwarzes Loch entsteht. Lediglich drei Parameter charakterisieren ein solches Objekt: Masse, Drehimpuls und elektrische Ladung.

Zur Redakteursansicht
loading content