Forscher überwinden die Grenzen der Lichtmikroskopie

Schärfer als das Licht erlaubt

Filamente von Vimentin in einer Zelle. Das Protein ist ein Element des Zellskeletts von Wirbeltieren. Das Bild im Hintergrund wurde konventionell aufgenommen, das im Sichtfeld des Mikroskops mit einem STED-Mikroskop, das die Beugungsgrenze der klassischen Lichtmikroskopie durchbricht. Bild vergrößern
Filamente von Vimentin in einer Zelle. Das Protein ist ein Element des Zellskeletts von Wirbeltieren. Das Bild im Hintergrund wurde konventionell aufgenommen, das im Sichtfeld des Mikroskops mit einem STED-Mikroskop, das die Beugungsgrenze der klassischen Lichtmikroskopie durchbricht.

Im 16. Jahrhundert notierte der italienische Arzt Girolamo Fracastoro, dass zwei hintereinander angeordnete optische Linsen ein Objekt näher und vergrößert erscheinen lassen sollten. Damit beschrieb er wahrscheinlich zum ersten Mal ein Mikroskop. Optische Linsen kannte man damals schon als Brille. Fracastoros Idee, sie gezielt zur Vergrößerung kleiner Gegenstände einzusetzen, war jedoch neu. Es sollte aber noch bis zum Anfang des 17. Jahrhunderts dauern, bis die ersten Lichtmikroskope gebaut wurden. Wann das genau geschah, ist unklar. Historisch gesichert ist jedenfalls, dass der niederländische Brillenmacher Hans Janssen und sein Sohn Zacharias im Jahr 1608 auf der Frankfurter Messe ein Mikroskop vorführten. Ein Jahr später präsentierte Galileo Galilei in Rom sein erstes Gerät.

Allerdings waren diese ersten Lichtmikroskope kaum brauchbar, denn sie litten unter fehlerhaften Linsen. Der Durchbruch gelang erst dem Niederländer Antonie van Leeuwenhoek mit einem radikal vereinfachten Design: Sein Mikroskop bestand nur aus einer einzigen Linse, es war also eigentlich eine Hochleistungslupe. Dafür hatte van Leeuwenhoek diese Linse mit einer zuvor unerreichten Präzision geschliffen. Bei fast 300-facher Vergrößerung entdeckte der Niederländer die damals völlig unbekannte Welt der Mikroben. Die Menschheit verdankt dem Lichtmikroskop einen gigantischen Zuwachs an Wissen über unsere Welt. Ohne Mikroskopie wäre zum Beispiel die moderne Medizin nicht denkbar.

Im 19. Jahrhundert wurden die Lichtmikroskope immer leistungsfähiger. Doch stieß ihre Technik an eine Grenze: Die Vergrößerung ließ sich nicht beliebig steigern. Der Jenaer Physikprofessor Ernst Abbe und der englische Physiker Baron Rayleigh erkannten fast zur gleichen Zeit: Sobald feine Objektdetails ungefähr so eng beieinander sitzen wie es der Wellenlänge des Lichts entspricht, kann ein Mikroskop sie nicht mehr voneinander getrennt abbilden. Schuld daran sind die Welleneigenschaften des Lichts. Eine Optik kann es nicht unendlich scharf bündeln: Die Brennpunkte der Strahlen blühen unweigerlich zu „Brennflecken" auf. Diese Flecken sind mindestens eine halbe Wellenlänge des eingesetzten Lichts groß. Alle feineren Strukturen innerhalb dieser Flecken sind im Mikroskopbild nicht mehr erkennbar.

Ernst Abbe begründete 1873 wissenschaftlich präzise, dass die Auflösung eines optischen Mikroskops nie über die „halbe Wellenlänge des blauen Lichts um ein Nennenswertes hinausgehen wird". Blaues Licht hat die kürzeste Wellenlänge im sichtbaren Spektrum, die Hälfte davon entspricht rund 200 Nanometern (Milliardstel Meter). Wegen dieses „Abbe-Limits" können Lichtmikroskope Objekte, die kleiner sind, nicht mehr abbilden. Dazu gehören zum Beispiel die meisten Viren. Es gilt auch für alle Moleküle des Lebens, selbst wenn viele davon außerordentlich groß sind. Besonders für die Biowissenschaften musste es demnach ein schöner Traum bleiben, durch das Mikroskop den Tanz der Moleküle in lebenden Zellen - also live - enträtseln zu können.

 

Zur Redakteursansicht
loading content