Warum Forscher noch mehr über Katalyse wissen wollen

Alles ganz schön oberflächlich

Die schwingende Oxidationsreaktion des Kohlenmonoxids wandert in Spiralwellen über die Oberfläche des Platin-Katalysators. An den hellen Stellen sitzen Kohlenmonoxid-Moleküle, die noch nicht reagiert haben (Bilddurchmesser etwa 500 Mikrometer). Bild vergrößern
Die schwingende Oxidationsreaktion des Kohlenmonoxids wandert in Spiralwellen über die Oberfläche des Platin-Katalysators. An den hellen Stellen sitzen Kohlenmonoxid-Moleküle, die noch nicht reagiert haben (Bilddurchmesser etwa 500 Mikrometer).

Im frühen 19. Jahrhundert führten Wohlhabende ihren Gästen gerne ein Tischfeuerzeug vor, das sensationell mühelos eine Flamme produzierte. Erfunden hatte es der Chemieprofessor Johann Wolfgang Döbereiner im Jahr 1823. Es enthielt verdünnte Schwefelsäure und ein Stück Zink an einem Haken. Durch Betätigen des Auslösers wurde das Zink in das Säurebad getaucht und eine chemische Reaktion gestartet, bei der unter Bildung von Zinksulfat (Zinksalz der Schwefelsäure) Wasserstoff frei wurde. Dieser verbrannte mit dem Luftsauerstoff zu Wasser. Normalerweise sind Wasserstoff und Sauerstoff reaktionsträge, weshalb man ihnen durch Anzünden erst Energie zuführen muss. Im Feuerzeug entzündete sich der Wasserstoff jedoch spontan, indem er durch einen kleinen Platinschwamm geleitet wurde: das Platin wirkte als Katalysator.

Katalysatoren reinigen heute nicht nur Abgase. Über neunzig Prozent aller von der industriellen Chemie genutzten Reaktionen benötigen einen Katalysator als quasi „Heiratsvermittler“ der jeweiligen Ausgangsstoffe (Chinesen gebrauchen für beide Funktionen übrigens das gleiche Wort). Ohne Biokatalysatoren, vor allem Enzyme, gäbe es kein Leben. Der dänische Chemiker Jöns Jakob Berzelius leitete den Namen vom altgriechischen Wort katálysis für „Loslösung“ ab, denn offensichtlich nahmen diese Stoffe an der Reaktion nicht teil. Der deutsche Chemiker und Nobelpreisträger Wilhelm Ostwald prägte die heute noch gängige Definition: „Ein Katalysator ist jeder Stoff, der, ohne im Endprodukt einer chemischen Reaktion zu erscheinen, ihre Geschwindigkeit verändert.“ In Lehrbüchern steht allerdings meist, dass der Katalysator beschleunigend wirkt – „Reaktionsbremsen“ sind selten interessant.

Katalysatoren wirken als chemischer „Sesam öffne dich!“: Sie eröffnen einer Reaktion einen günstigen Pfad durch die Energielandschaft, der sonst verschlossen ist. Während einer Reaktion brechen zuerst chemische Bindungen in den Ausgangsmolekülen (Edukte) auf, dann bilden sich neue Bindungen. Dabei entstehen die Moleküle des Endstoffes (Produkt). Den Reaktionsweg verstellt jedoch oft ein mächtiger Energieberg. Um diesen zu bezwingen, brauchen die Moleküle Energie. Im Labor führt man sie meist als Wärmeenergie zu, was aber in der industriellen Großproduktion die Energiekosten explodieren lassen kann. Zudem kann starkes Erhitzen die beteiligten Moleküle zerstören. Der Katalysator umgeht diesen hemmenden Energieberg und lässt die Reaktion ohne viel Energiezufuhr ablaufen

Zur Redakteursansicht
loading content