Astronomie

Künstlerische Darstellung des Zentralbereichs einer aktiven Galaxie. Das sehr massereiche Schwarze Loch im Zentrum ist umgeben von einer Akkretionsscheibe und Staubwolken. Senkrecht zur Scheibe wird Energie in Form von Jets abgestrahlt.

Galaxienherz durch die Staubbrille betrachtet

Will man ein Foto mit kräftigen Farben schießen oder sich beim Autofahren nicht von spiegelnden Fensterscheiben blenden lassen, greift man vielleicht zu einem Polarisationsfilter. Man setzt ihn vor das Kamera-Objektiv oder als Brille auf die Nase. Nur zur Beobachtung von aktiven Galaxien hat sie bis jetzt noch niemand eingesetzt. Genau diese Idee hatte das internationale Forscherteam um Makoto Kishimoto vom Max-Planck-Institut für Radioastronomie.

Mit diesem Trick ist es den Physikern gelungen, Quasare, die stark leuchtenden Kernbereiche von weit entfernten Galaxien, unverfälscht zu beobachten. Die massereichen Schwarzen Löcher in ihrem Zentrum strahlen mit einer Energie, die diejenige der Sonne um ein Billionenfaches übertrifft. Die mächtigen Kraftquellen werden dabei angetrieben durch interstellares Gas, das in Form sogenannter Akkretionsscheiben aus der Umgebung direkt in das Schwarze Loch eingesogen wird.

Bislang war es nicht möglich, diese Umgebung direkt zu untersuchen, denn sie befindet sich in dichten Staubwolken. Die starke Strahlung dieser Wolken verfälscht das gesuchte Spektrum der Akkretionsscheibe. Deshalb konnten Forscher die Existenz einer solchen Scheibe bisher auch nicht experimentell bestätigen. Das gemessene Lichtspektrum der Strahlung aus dem Kern stimmte nicht mit den vorausberechneten Werten überein. "Die Astronomen wurden vor allem dadurch irritiert, dass die am besten untersuchten Modelle für die Strahlung der Akkretionsscheiben nicht zu den Beobachtungen passten. Dabei fiel auf, dass die Scheiben nicht annähernd so blau waren, wie sie theoretisch hätten sein sollen", erklärt Makoto Kishimoto.

Um diesen Gegensatz zu klären, hat Kishimoto zusammen mit anderen Astronomen aus aller Welt den Anteil der Störstrahlung aus den Staubwolken unterdrückt. Sie verwendeten dafür eine besondere Eigenschaft des Lichts: die Polarisation. Denn die Strahlung aus der Akkretionsscheibe wird in der direkten Umgebung der Scheibe gestreut und erscheint daher polarisiert, das heißt, die Lichtwellen schwingen nur in einer Ebene. Die Strahlung aus den Staubwolken weiter weg ist hingegen unpolarisiert, die Lichtwellen schwingen kreuz und quer. Mit dem Polarisationsfilter lassen sich beide Strahlungstypen voneinander trennen und die Astronomen können die wahre spektrale Verteilung der Kernquelle bestimmen.

Für diese Beobachtungen kamen Polarisationsfilter an einigen der größten Teleskope weltweit zum Einsatz - an einem der VLT-Teleskope der Europäischen Südsternwarte auf dem Paranal in Chile und am United Kingdom Infrared Telescope (UKIRT) auf dem Mauna Kea in Hawaii. Dadurch wurde es möglich, den Beitrag der heißen Staubwolken von außerhalb der Akkretionsscheibe zu unterdrücken und zu zeigen, dass die spektrale Verteilung der Strahlung aus der Akkretionsscheibe selbst tatsächlich so blau ist wie von der Theorie gefordert.

Die Beobachtungsdaten weisen darauf hin, dass die gemessene Strahlung aus den äußeren Bereichen der Akkretionsscheibe stammt. Wichtige Fragen bleiben jedoch offen, etwa wie und wo das Gebiet der Akkretionsscheibe endet und wie Material dorthin nachgeliefertwird. "Unsere neue Methode sollte es aber bereits in naher Zukunft ermöglichen, darauf Antworten zu finden ", sagt Makoto Kishimoto.

Max-Planck-Gesellschaft (2008)